EMC effect for light nuclei: new results from JLab

Aji Daniel Ohio University (For the E03-103 collaboration)

12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon Williamsburg, May 31 – June 4, 2010

1

- The EMC effect
- Experiment E03-103 at Jefferson Lab
- Results on nuclear EMC effect
- Approved 12 GeV experiment
- Summary

- Typical energy scale of nuclear process ~ MeV
- Typical energy scale of DIS ~ GeV
- So naïve assumption (at least in the intermediate xbj region);
 Nuclear quark distributions = sum of proton + neutron quark distributions

$$F_2^A(x) = ZF_2^P(x) + NF_2^n(x)$$

The EMC effect

 $F_{2}^{A}(x) = ZF_{2}^{p}(x) + NF_{2}^{n}(x)$

- It turns out that the above assumption is not true.
- Nuclear dependence of structure functions, (F₂^A/F₂^D), discovered over 25 years ago; "EMC Effect"
- Quarks in nuclei behave differently than the quarks in free nucleon

Aubert et al., Phys. Lett. B123, 275 (1983)

Re-analysis showed that ratios at x<0.2 was not correct, but large x trend confirmed.

EMC effect: Representative data

EMC effect indicates that quark distributions are modified inside nuclei.
 Extensive measurements on heavy targets (SLAC, NMC, BCDMS,...)
 Different kinematical regions understood in terms of different processes

EMC effect: Representative data

EMC effect indicates that quark distributions are modified inside nuclei.
 Extensive measurements on heavy targets (SLAC, NMC, BCDMS,..)

X

X

Different kinematical regions understood in terms of different processes

Conventional nuclear physics models

- Fermi smearing (rise at large x)
- Binding models
- Nuclear pions

Exotic models

- Multi-quark clusters (6q, 9q bags)
- Dynamical rescaling
- Modification of nucleon structure.

Several models. Some only valid in certain regions. Some inconsistent with other reactions (e.g., Drell Yan)

- JLab E03-103 collaboration
- Spokespersons:
 - J. Arrington and D. Gaskell
- Graduate students:
 - J. Seely and A. Daniel
- Nuclear matter analysis:
 - P. Solvignon
- Concurrent with E02-019 (inclusive cross sections at x>1, F(y) scaling, short range correlations, ...) N. Fomin

Ran during summer and fall of
2004 in HALL C of JLAB with 5.77
GeV.

- ♦ Cryo targets: H, ²H, ³He, ⁴He
- Solid targets: Be, C, Al, Cu, Au (Al for cell wall subtraction).

Additional data at 5 GeV on carbon and deuterium to investigate detailed Q² dependence of the EMC ratios.

Kinematics

- High x (x>0.6) data not in the typical DIS region (W < 2 GeV; resonance region)
- Data at smaller angles will allow us to put quantitative limits on deviation from scaling in the cross sections and cross section ratios

Hatched lines \rightarrow angles for 5.01 GeV

Black lines are contours of fixed invariant mass

E03-103 results: cross section ratios, carbon and ⁴He

□No complications from isoscalar corrections.

□E03-103 results are consistent with SLAC data, but have much higher precision at large x (although at lower W² value than SLAC).

E03-103 results: scaling of cross section ratios

♦Q²=4.06 GeV and Q²=4.83 results are for 5 GeV; remaining results are for for 5.77 GeV

Cross section ratios appears to scale (independent of Q²) to very large x. This implies that the higher twist corrections and additional scaling violation corrections are very small in the target ratios.

E03-103 results: scaling of cross section ratios

Hollow symbols SLAC and solid symbols E03-103

Isoscalar corrections

 For non-isoscalar nuclei, we need to correct for excess of neutrons or protons. The multiplicative correction factor is

$$f_{iso}^{A} = \frac{\frac{1}{2} \left(1 + F_{2}^{n} / F_{2}^{p}\right)}{\frac{1}{A} \left(Z + (A - Z)F_{2}^{n} / F_{2}^{p}\right)}$$

- Since there is no free neutron target, extraction of F2n/F2p is always modeldependent.
- Want n/p in the nucleus, not for free nucleon

- CTEQ: global parton distribution fit. Neglects Fermi motion of nucleons.
- NMC: data mostly at low x. No binding correction
- SLAC: x range same as E03-103. Also corrected for Fermi motion effects when extracting F2n/F2p from sig_D/sig_P

Magnitude of isoscalar corrections

>SLAC fit: from high Q^2 global analysis, done to free n/p.

➢E03-103 results extracted using bound n/p ratios and calculations done for E03-103 kinematics.

(Methodology in J. Arrington et al., Phys.G36:025005,2009)

E03-103 results: cross section ratios for ³He

□E03-103 isoscalar corrections done with ratio of bound neutron to bound proton in ³He .

EMC effect small, but shape consistent with other nuclei.

E03-103 results: cross section ratios for ³He

X

□E03-103 isoscalar corrections done with ratio of bound neutron to bound proton in ³He.

□Ratio of 3 He/(D+p); check for applied isoscalar correction; limited to x<0.65 due to proton resonance contributions

E03-103 results: Mass number dependence vs density dependence

E03-103 results

- Large difference in the magnitude of the EMC effect in ³He and ⁴He doesn't support previous mass dependent fits.
- Both A- and ρ-dependent fits fail to describe these light nuclei.

♦ Size of the effect given by a fit to the cross section ratios between x= 0.35 and x= 0.7

Density calculated using ab-initio GFMC calculation

(S.C. Pieper and R.B. Wiringa, Ann. Rev. Nucl. Part. Sci 51, 53 (2001))

- Data show smooth behavior as density increases except for ⁹Be
- One possible explanation is that the effect depends on nucleon's local environment.

 Average density of ⁹Be is relatively low, but most nucleons are in high local densities of alpha cluster.

EMC effect: Future inclusive measurements

Jefferson Lab 12GeV experiment E-10-008 Spokespersons: J. Arrington, A. Daniel, D. Gaskell

- Higher Q², expanded range in x (both low and high x); DIS extends to x=0.8, W²>2 extends to x=0.92
- Will further investigate the influence of local environment on the observed nuclear dependence with a more complete nuclei.
- Light nuclei includes ¹H, ²H, ³He, ⁴He, ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹¹B, ¹²C

Future measurements (E10-008)

♦ Avoid ³He isoscalar corrections

- Compare to calculations of 3He/(D+p)
- Push to largest x possible without large resonance contributions.

- Information about neutron or proton in-medium from combinations of nuclei such as ¹¹B-¹⁰B, ⁷Li-⁶Li, ¹²C-¹¹B
- Ratio of n/p in-medium is direct check of applied isoscalar corrections

□EMC effect shows that the quark distributions in nuclei are modified in a non –trivial way. Specific origin of the observed modification is not clearly identified yet.

□ E03-103 provides differential cross sections and structure functions for ²H, ³He, ⁴He, C, Be, Cu and Au over a broad range in x and Q2.

□First measurement of the EMC effect in ³He above x=0.4 and precision measurement in ⁴He.

□E03-103 results doesn't support previous A dependent and average density dependent fits, and hints that the nuclear modifications might be mainly driven by nucleon's local environment.

□Approved 12 GeV experiment will further investigate the influence of nucleon's local environment on the observed nuclear effects.

□Also, absolute cross sections will be available for comparison to detailed calculations for a large selection of light nuclei.